Воскресенье, 05.05.2024, 13:58
Приветствую Вас Гость | RSS

Сайт учителя физики МКОУ Качугская СОШ №1 Кузнецовой Г.В.

Наш опрос
Оцените мой сайт
Всего ответов: 53
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Блог

Главная » 2017 » Февраль » 11 » « РЕВОЛЮЦИИ НОН – СТОП»
14:18
« РЕВОЛЮЦИИ НОН – СТОП»

… – Кажется, вот-вот настанет конец, вот-вот случится банкротство. И вдруг приходит новая технология и все вытаскивает. Внезапно открывшаяся революционная технология перечеркивает все вчерашние проблемы, дает новый толчок экономике и новый приток инвестиционных капиталов. Так примерно случилось с Интернетом… А сейчас было бы неплохо, появись нечто новое в энергетике. Причем с обещающе-экологической репутацией – экология нынче в моде. Тогда эта новация разом спишет старые экономические долги и обиды и даст толчок новому технологическому циклу.

Не зря говорится: нет ничего практичнее хорошей теории. Теория изначально металлогидридной Земли хороша. Значит, она должна обещать нам что-то практически выгодное…

Пару технологических революций, обещающих полную перестройку значительной части всей земной промышленности …

                                                         Революция №1

     Поэтичный коммунистический язык называл хлебом промышленности не только уголь, но и сталь. Однако, что важнее, хлеб-1 или хлеб-2? Без нефти, как мы уже выяснили, цивилизация существовать, в принципе, может.  Гитлер успешно заменил нефть сталью, немецким гением и углем.

А вот чем бы, интересно, он заменил сталь?

Возьмем алюминий, например… Нет. Не будем мелочиться! Берем сразу магний! Это же просто чудо, а не материал! Магний применяют в военном самолетостроении, то есть там, где нужна легкость, прочность. Конечно, магний вдвое дороже алюминия, а алюминий, в свою очередь, втрое дороже стали. Итого вшестеро… «Однако!» – как сказал бы Киса Воробьянинов.

Но оно того стоит! Магний не ржавеет, он легче стали в четыре с половиной раза и даже легче алюминия в полтора раза. … Однако если бы автомобильные конструкторы сделали машину из сплава магния с алюминием, была бы самым кардинальным образом решена не только задача снижения веса машины, но и проблема коррозии кузова, а с нею – проблема утилизации автомобиля.

Почему же хорошие металлы так дороги? Потому что для их выплавки нужна бездна энергии. А поскольку в себестоимости алюминия 90% занимает цена электроэнергии, получается, что в виде алюминиевых чушек проклятые капиталисты вывозят из России «овеществленное электричество». С магнием та же петрушка – для его добычи нужно израсходовать столько электроэнергии, что цена конечного продукта просто зашкаливает. «В общем, хороша Маша, да не наша!» – так рассуждают простые конструкторы, привыкшие, что магний и алюминий – роскошь.

А какого черта, если Земля на треть состоит из магния, он так дорого нам обходится? Да это ж должен быть самый дешевый элемент после кремния, коего вообще у нас 45% массы планеты!

Так-то оно так. Но беда в том, что мы у себя, на поверхности планеты, получаем эти металлы из их руды, то есть восстанавливаем из окислов. Это очень дорогой процесс. А в чистом виде легкие металлы находятся в толстом слое металлосферы, который располагается на глубине 100-150 км. Максимальная глубина, на которую пробурилось человечество в глубь Земли, 12 километров. Во-первых, это слишком коротко, во-вторых, слишком узенько, чтобы добывать металлы через такую дырочку.

Вспомним про языки пластичных наводороженных интерметаллидов (они же силициды), которые кое-где подползают совсем близко к поверхности, – настолько близко, что даже вступают в бурную реакцию с водой, производя кучу ненужного тепла. Это происходит в рифтовой зоне океанов, где интерметаллиды почти "лижут" воду. Но это нас не устраивает, поскольку преодолевать километры океанской толщи не более удобно, чем километры суши. Но кое-где рифтовые зоны забегают концами планетарных трещин на континентальные плиты. Разлом Красного моря не только разделяет донной трещиной Африку и Евразию, но кончик этой трещины бежит по Израилю. Из космоса этот разлом хорошо виден, именно на нем лежат Мертвое море и Тивериадское озеро… Один из тихоокеанских разломов забегает в Айдахо (США), где взрывами газов силанов рвет скалы в Долине лунных кратеров… Есть рифтовая зона в Забайкалье, там летучие силаны, взрываясь, ломают лиственницы…

От несметных и дешевых залежей чистого магния, кремния, алюминия нас отделяет всего ничего: 3-5 км. Это уже вполне достижимые глубины. Для проникновения туда не нужно техники завтрашнего дня, достаточно техники дня вчерашнего.

Интерметаллиды подходят к поверхности холодными. На этом было основано одно из неожиданных, рискованных и уже сбывшихся предсказаний металлогидридной теории – о том, что в байкальской зоне рифтогенеза должен быть пониженный тепловой фон. Именно поэтому, кстати, температура, измеренная в Северо-Муйском тоннеле Байкало-Амурской магистрали, оказалась гораздо ниже, чем предполагали, ведь этот тоннель находится как раз в зоне рифтогенеза. Если пересчитать температурный перепад между тоннелем и вершиной Муйского хребта в градусах на километр, получится всего 2°С/км. А не 30°С/км, как это бывает обычно. Значит, сама природа дала нам здесь фору.

Помощь природы тут состоит еще и в том, что в Забайкалье вечная мерзлота, которая не пропускает воду в глубину и не позволяет ей реагировать с силицидами с бурным выделением тепла – как это происходит в океанских рифтах, где из-за реакций очень высокая магматическая активность. То есть России в этом смысле крупно повезло… Так же, как и Соединенным Штатам,  Израилю. Вот три страны, которые могут стать мировыми монополистами на рынке супердешевых легких металлов.. Две с половиной тысячи лет назад долгий бронзовый век сменился железным веком. Теперь и железный век, похоже, кончается…

Появление железа было революцией, перевернувшей планету. Не меньшей революцией будет и переход в век легких металлов. Это постепенно заставит отказаться от почти всей металлургической инфраструктуры века железного. Если вы хоть немного представляете себе, о чем идет речь, масштаб задачи не может не впечатлять. И уже за одну только эту конфетку можно было бы сказать металлогидридной теории большое сердечное спасибо, но она преподносит жаждущему чудес человечеству еще один сюрприз.

                                                 Революция №2

            …Поначалу человечество, конечно, экспериментировало с паром. Именно паромобили были первыми самобеглыми колясками. А вот вторыми родились, как ни странно, электромобили.

В 1838 году в Англии Робертом Дэвидсоном был создан первый электромобиль. И к концу XIX века, когда возникли первые электростанции, в городах начало появляться электрическое освещение и телефоны, на заводах уже вовсю работали электромоторы, а в Одессе на Канатной улице была построена монорельсовая электрическая железная дорога для перевозки грузов по территории предприятия… в общем, когда уже всем стало ясно, что грядущее столетие будет веком электричества, основные усилия человечества были направлены на создание именно электроавтомобилей. Никто не сомневался, что будущее за электрическим автомобилем. Газеты публиковали сообщения типа: «Русскому электротехнику А. Р-ху удалось изобрести двухместную электрическую карету. Вес кареты равен 22 пудам. Карета приводится в движение и освещается исключительно электричеством… В такой карете очень удобно совершать путешествия по проселочным дорогам».

Другой русский изобретатель по фамилии Романов в 1899 году презентовал двухместный электромобиль массой в 750 кг, причем половину этой массы составлял вес аккумуляторов. Заряда хватало на 65 километров при скорости около 50 км/час. Вскоре был построен городской рейсовый электробус с тем же запасом хода.

А потом пришла нефть.

И пыхтящие двигатели внутреннего сгорания властно оттеснили электромобили в сторону. Иначе и быть не могло: такое огромное количество автомобилей, которое сейчас обеспечивает жизнь цивилизации, просто не может быть электрифицировано. Дело здесь не в том, что самый хороший аккумулятор по энергоемкости уступает стакану бензина, а, стало быть, пробег электромобиля без подзарядки слишком короток… и не в том, что заряжаются аккумуляторы часами, а заливка жидкости в бак занимает минуты. Дело в ином: все автомобили мира пожирают много больше энергии, чем вырабатывают все электростанции мира. Поэтому, несмотря на болезненную любовь развитого человечества к экологии, разговоры о спасительных электромобилях давно затихли. Сменившись разговорами о водородной энергетике…

Водородная энергетика – писк двух последних десятилетий. Водород – идеальное с точки зрения экологии топливо. При сгорании водород образует только воду, и больше ничего. Переделка бензинового мотора в водородный не сложнее, чем установка на него обычного газового оборудования. А можно и не переделывать ДВС, а использовать так называемые топливные элементы, о которых сейчас столько говорят. Многие полагают, что эти самые топливные элементы – детище современных научных достижений, но фактически их изобрели еще при Жюле Верне, а использовать начали только через сто лет. Что такое топливный элемент?

Представьте себе бак, разделенный пополам полупроницаемой электролитической мембраной. В одной половине бака у нас кислород, в другой водород. Встречаясь на мембране, молекулы того и другого начинают реагировать, образуя воду. Только энергия при этом медленном горении выделяется не в виде тепла, а сразу в виде разности электропотенциалов, которые можно снимать с мембраны. Эту электроэнергию мы потом сможем использовать, как захотим. Например, ее можно подать на колесный электродвигатель автомобиля. А также на компрессор кондиционера, чтобы водитель мог охлаждать салон машины, не включая двигатель. Опытные образцы таких машин колесят по испытательным полигонам, давая журналистам повод писать о наступлении новой эры в энергетике – водородной. Одна только фирма «Дженерал Моторс» истратила на экспериментальные работы в области водородного автомобиля более 50 миллионов долларов. И, кстати, добилась больших успехов. Их водородные машины могут на одной заправке проехать до 800 километров. Отличный результат, не идущий ни в какое сравнение с аккумуляторным электромобилем!

Столько шума вокруг водородной энергетики потому, что у нее сплошные плюсы. Если КПД бензинового мотора 40%, то КПД топливных элементов 85%. И при этом ни свинцовых тебе выбросов, ни угарного газа, ни прочих загрязнений окружающей среды, столь свойственных бензиновым и дизельным моторам. Да и от злых арабов с их нефтью и шахидскими поясами уже можно не зависеть… Кругом красота! Что же мешает массовому переходу на водород?

Отсутствие водорода.

До тех пор, пока мы живем на планете с железным ядром и силикатной мантией, водорода у нас не будет: здесь ему просто неоткуда ему взяться, поскольку по ортодоксальной теории почти весь водород на нашей планете присутствует в виде воды. В чистом же виде его практически нет. Ну а если вдруг где-то он и возникает, как, например, в Большом пламени над гавайскими вулканами, так это, наверное, из-за разложения воды при высокой температуре в вулкане – разлагается она на водород и кислород, а потом водород тут же в этом кислороде и сгорает.

Как добыть водород на планете, на которой он присутствует в виде воды? Только извлечь из воды, конечно, другого выхода нет… Значит, опять повторяется та же история, что с легкими металлами, когда человечество, затрачивая бездну энергии, добывает нужные ему чистые материалы из оксидов (вода – это оксид водорода). И отсюда вытекает главный парадокс водородной энергетики: чтобы добыть из водорода энергию, окисляя его кислородом в моторе машины, нужно сначала затратить энергию, чтобы этот самый водород раскислить, то есть разложить воду на кислород и водород. А чтобы разорвать молекулу воды, нужно затратить столько же энергии, сколько потом получится при ее образовании. Это в теории. А на практике придется затратить много больше. Тупик.

Но, по счастью, мы живем на совсем-совсем другой планете – металлогидридной. В которой полно не только легких металлов в чистом виде, но и водорода. Причем добывать его можно двумя способами. Способ номер один я описывал в книге «Апгрейд обезьяны». На суше в зонах рифтогенеза (например, в нашем Забайкалье) бурим несколько скважин, чтобы добраться до силицидов, и, подавая через одну из скважин воду, искусственно создаем то, что происходит в естественных условиях на морском дне в рифтовой зоне – экзотермические реакции между водой и силицидами. И через соседние скважины начинаем отбирать горячий водород. Какова экономичность этого процесса? Она великолепна! Один килограмм силицидов, обильно политых водой, дает 1200 литров водорода и халявного тепла столько же, сколько можно получить, сжигая 1 кг бурого угля. Халявное тепло используем для местных нужд, а сам водород трубопроводом гоним из Забайкалья в Европу и Китай. Обратным трубопроводом качаем валюту…

Как же изменится наша планета в условиях «водородной энергетики»?… Можно попробовать самыми общими мазками нарисовать это не такое уж далекое будущее.

Итак, в мире начался новый технологический цикл. Старые экономические «обиды» и потрясения забыты – старые долги реструктурированы под новые блистательные перспективы. Америка вновь на коне. Инвесторы стаями слетаются на новые жилы – добычу водорода и легких металлов. Несколько стран, где это можно делать наиболее простым и дешевым способом, – Израиль, Россия, Канада, Исландия и Америка – приобретают солидный политический вес и привлекают всеобщее внимание.

По миру вовсю катится новая технологическая революция – на старые машины с двигателями внутреннего сгорания мелкие фирмы ставят газобаллонное оборудование, а крупные корпорации спешно строят заводы по производству топливных элементов. Приятный сюрприз: оказывается, по пожаро– и взрывобезопасности водородный автомобиль дает бензиновому сто очков вперед!

Предприятия по производству ДВС терпят крах. Какое-то время еще держатся заводы крупных судовых двигателей внутреннего сгорания – в надежде, что не удастся решить проблему запасания на кораблях нужного количества водорода, и какое-то время корабли еще будут ходить на солярке. Хранить водород, этот горючий и взрывоопасный газ, действительно страшно и неудобно в сжатом состоянии, то есть в газовых баллонах. Для океанских лайнеров это малоприемлемый вариант. Но водород можно хранить в металлах! Закачиваем в дешевый магний водород и потом, путем постепенного прогрева, извлекаем его из металла. Напомню, что один объем металла может поглотить тысячи объемов водорода. В металлах водорода помещается даже больше, чем в пустом газовом баллоне под давлением!

Оказывается, гораздо дешевле вместо топлива брать на борт лайнеров магниевый порошок или тонкие перфорированные листы. И уже на корабле, окисляя магний забортной водой, получать водород и тепло для бортовой электростанции. Получается целый мини-заводик. Но вскоре массовое производство топливных элементов делает их настолько дешевыми, что элементы вытесняют тепловые двигатели с морских судов.

Один за другим разоряются машиностроительные заводы по производству коробок передач – автоматических и механических: у новых автомобилей колеса вращают электромоторы – как у троллейбуса.

Потеряли львиную долю заказов химические фабрики по производству смазочных масел. Водородомобилям с топливными элементами масла почти не нужны. Смазка требуется только грузовикам и джипам для гипоидных шестерней картера дифференциала плюс густая смазка ШРУСов. Ну, еще полстакана легкого масла для компрессора кондиционера.

На керосине пока еще вовсю летают самолеты. Хранить водород в металле – слишком тяжело для авиации, где считают каждый лишний килограмм. Магний, конечно, легок, но не легче керосина. … Но самое главное, самолеты – вещь финансово инерционная: они слишком дороги, чтобы вот так просто менять весь парк.

Тем не менее перспективы у газовых самолетов есть. Мало кто знает, но в СССР еще в 1970-е годы начали искать альтернативное топливо для авиации – экспериментировали с жидким водородом, метаном, ацетиленом, пропан-бутановой смесью. И пришли к выводу, что газ удобнее хранить в самолете в жидком виде.

Иностранцы тоже не дремали. NASA потратило четыре года и миллиард долларов на разработку космического самолета на жидком водороде, но проект провалился: так и не удалось спроектировать надежные топливные баки.

В 1980 году «Локхид» совместно с одной из английских фирм провел испытания, целью которых было выяснить, какой самолет безопаснее при загорании – керосиновый или водородный. Вопрос возник не случайно: всем известно, что гремучий газ (смесь водорода с воздухом) крайне взрывоопасен. Однако испытания показали, что при загорании у пассажиров водородного лайнера все-таки больше шансов выжить, чем у пассажиров «керосинки».

В те же годы в КБ Туполева построили на базе Ту-154 экспериментальный самолет Ту-155, летающий на сжиженном водороде. В его хвостовой части вместо пассажирских кресел был целый отсек, где стоял бак с вакуумной термоизоляцией, которая поддерживала температуру -253°С. В серию машина не пошла по той же причине, что и насовский «космический самолет»: требуемую надежность и технологичность водородной системы обеспечить не удалось. Зато был построен «почти серийный» Ту-155 на сжиженном природном газе, который летал в Европу на разные авиасмотрины.

В общем, в принципе, на природном газе летать вполне можно. А если приложить голову и деньги и усовершенствовать топливную систему, то можно летать и на водороде. Но не скоро…

Итожим сказанное. В самом начале водородной эры по миру летают только «керосиновые самолеты», зато деньги на разработку газовых самолетов выделяются уже без вопросов – с прицелом на будущее. И будущее постепенно наступает: через полвека мировой парк самолетов уже более чем наполовину состоит из газовых машин…

Меняется инфраструктура мировой энергетики. Усиливается давление гринписовцев на атомные электростанции. Человечество вновь обращает благосклонные взоры на тепловые станции: в водородном мире они становятся «абсолютно экологическими». Поэтому тепловые станции спешно реконструируют для работы на водороде. Особая реконструкция и не требуется. Конечно, немалые инженерные проблемы возникают на угольных и мазутных ТЭС, но те, которые жгли природный газ, переделок почти не требуют: всех делов-то – демонтировать за ненадобностью очистные сооружения. Замирает термоядерный проект. Академик Велихов – мировой куратор этого величайшего из всех проектов, какие знала история цивилизации, рвет на себе последние волосы. Мечта всей его жизни опять тормозится. Жаль старика…

Никаких новшеств не испытывают только космонавты на орбите: они на космических станциях пользуются топливными элементами еще с конца XX века.

Не сразу, весьма постепенно, но неуклонно по мере перестройки мировой индустриальной инфраструктуры начинает падать цена на нефть. Это закатывается солнце нефтяного века. Арабские Эмираты, Кувейт, Нигерия, Ирак, Иран, Венесуэла, а также другие страны – экспортеры нефти чувствуют себя неуверенно. Лишь Россия – счастливое исключение. У нее есть экспортная замена нефти. Какое счастье, что Ермак завоевал эту Сибирь!…

Нефть падает, и лишних денег для поддержания международного терроризма у шейхов уже нет.Теперь арабы ненавидят Америку не за то, что она их грабит, забирая невосполнимые ресурсы, а за то, что грабить перестала. Однако постепенно, с иссяканием денежного потока, иссякает и терроризм. Большего градуса ненависти к Западу, чем сейчас, в арабском мире достичь уже не удастся: не такой уж большой процент арабов в тотально нищем арабском мире жирует от нефти и может эту ненависть подпитывать деньгами. Тем паче, что огромные пакеты акций предприятий по добыче магния и водорода скуплены именно нефтяными шейхами.

Самый сильный удар переживут те простые жители богатых нефтяных стран арабского мира, которые привыкли жить на полном социале, ездить на дорогих машинах и помыкать пришлыми гастарбайтерами из Пакистана, Индии и Палестины.

А вот ненависть к Израилю, опять вытянувшему у Фортуны козырную карту, возрастет – равно как возрастут и поползновения арабов стереть Израиль с карты мира. Но если сейчас это провозглашается из чистой любви к искусству, то в водородном мире обретет под собой твердую экономическую основу: отнять у Израиля рифтовую зону и продолжать использовать ее вместо прежней нефти.

Впрочем, легкие металлы и водород покупают не все. Так же как любая новая технологическая революция, эта еще больше углубила пропасть между богатыми и бедными странами. Несмотря на дешевизну магния и водорода, бедные страны не могут их покупать: им нечего предложить взамен. Если раньше они могли торговать сырьем, то теперь эти возможности сузились. Но если нельзя покупать, нужно использовать то, что есть. Поэтому в бедных странах продолжает процветать экономика нефти и стали. Прошлый век!…

Впрочем, вскоре оказывается, что монополизм «магниевых» держав очень относителен. Если магний действительно можно добывать только в зонах рифтогенеза, то водород имеет смысл поискать и в других районах мира. Если вспомнить случай с водородным факелом, спалившим буровую в Якутии, это становится понятным. Существуют места на планете, где силицидные языки не подступают близко к поверхности, но поступающий из астеносферы водород по своей старой привычке собирается в струи и вовсю сифонит из земли. Эти места можно найти и использовать. Их много. Так что, возможно, магниевыми монополистами и станут всего три-пять держав. Но вот водородными вряд ли…

На этом приятные сюрпризы кончаются.

 

Из книги ( гл. 5) Александра Никонова "Верхом на бомбе. Судьба планеты Земля и ее обитателей."

Просмотров: 336 | Добавил: kuznetzowagalia2017 | Рейтинг: 5.0/1
Всего комментариев: 2
avatar
0
1 iranik • 17:05, 15.02.2017
Очень познавательно
avatar
0
2 korzovana • 13:12, 16.02.2017
Спасибо за весьма интересный материал. Прочитала с удовольствием.
avatar
Вход на сайт
Поиск
Календарь
«  Февраль 2017  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728
Архив записей

Copyright MyCorp © 2024
uCoz